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Superconducting phase qubit based on the Josephson oscillator with strong anharmonicity
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We propose a superconducting phase qubit on the basis of the radio-frequency superconducting quantum
interference device with the screening parameter value B; = (27/®y)LI.~ 1, biased by a half-flux quantum
®,=d/2. Significant anharmonicity (>30%) can be achieved in this system due to the interplay of the cosine
Josephson potential and the parabolic magnetic energy potential that ultimately leads to the quartic polynomial
shape of the well. The two lowest eigenstates in this global minimum perfectly suit for the qubit which is
insensitive to the charge variable, biased in the optimal point and allows an efficient dispersive readout.
Moreover, the transition frequency in this qubit can be tuned within an appreciable range allowing variable

qubit-qubit coupling.
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The superconducting qubits based on the Josephson tun-
nel junctions (see, e.g., the reviews in Refs. 1 and 2) have
already demonstrated their great potential for the quantum
computation.> Depending on their design and principle of
exploiting the junction nonlinearity, the superconducting qu-
bits are usually classified>® into the categories of charge,*
charge-phase,>® transmon,” flux,®® and phase qubits'’
(roughly in the order of increasing the junction size). The
proposed, in this paper, circuit falls into the class of phase
qubits, i.e., the devices which are based on energy quantiza-
tion inside the anharmonic energy wells. Due to rather low
electrodynamic impedance these qubits are particularly suit-
able for integration with microwave on-chip transmission
lines and resonators, i.e., the elements which significantly
extend the scope of the circuit designs. Moreover, this prop-
erty of the phase qubits may be particularly advantageous in
realization of more complex integrated circuits with quantum
behavior.!! The quantum state tomography!? and generation
of Fock states'® have been recently demonstrated in the cir-
cuits including the phase qubits. Therefore, possible im-
provement of the phase qubits could have impact on further
successful development of solid-state quantum information
circuits.

The energy wells of the phase qubits are engineered with
the help of nonlinear Josephson inductance whereas self-
capacitance of the Josephson junction (JJ) adds a kinetic en-
ergy to this oscillatorlike electrical circuit. In the conven-
tional phase qubits, the energy wells are formed by the
inclined cosine Josephson potential.!® Their shape is con-
trolled either by finite bias current with the values slightly
below the critical current of the Josephson junction /. or by
finite flux bias @, applied to the qubit loop of sufficiently
large inductance.'* The former case corresponds to the so-
called washboard Josephson potential, whereas in the latter
case the periodic Josephson potential is superimposed on
parabolic magnetic potential forming asymmetric side wells.
In both cases, the qubit well can be approximated by the
cubic parabola with a smooth energy barrier isolating the
shallow well from one side and allowing escape out of this
well from another side that enables a simple readout.

The low depth of the cubic parabola well leads to anhar-
monicity, viz., successive reduction in the transition energies
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AE,=E, ,-E,, n=0,1,..., from bottom to top, necessary for
the qubit operation within the basis states [n=0) and [n=1),
excluding unwanted excitation of the higher energy states
(n>1). Usually the phase qubit is designed such that for
appropriate phase bias the cubic potential well includes
three-four energy levels with anharmonicity of a few
percent.>!> This is achieved by adjusting the plasma fre-
quency of the Josephson junction both by designing appro-
priate parameters of the junction and, possibly, by applying
external capacitor shunting. The lowering of the energy bar-
rier by applying the so-called measuring pulse, makes pos-
sible the reduction in the number of the levels to two (n=0
and 1), with notably different rates of escape to a running-
phase state (in the case of current bias), or to the lower-
energy state in the adjacent deeper well (in the case of the
loop configuration of the qubit). The large (but finite) differ-
ence of these tunneling rates sets the maximum theoretical
value for the fidelity of such measurement to 96.6%. In the
carefully designed and optimally biased qubit the best ex-
perimental fidelity values approach 90%.'® The main disad-
vantage of such phase qubit is the necessity of resetting it
after each measurement.

In contrast to the charge,* charge-phase,’ flux,’’
transmon’ and recently proposed, the so-called fluxonium!’
qubits, the conventional phase qubits cannot inherently oper-
ate in an optimal point, i.e., in the symmetric working point
insensitive in the first order to the noise that could give dras-
tic improvement to the qubit performance.>'® [The excep-
tions are the recently proposed three-junction interferometer
circuit! and the so-called camelback potential phase qubit
based on the two-junction superconducting quantum interfer-
ence device (SQUID).2°] Moreover, the limited anharmonic-
ity of the phase qubit makes the observable reactance imped-
ance (i.e., the Josephson inductance) values in the ground
and exited states hardly distinguishable. This poses serious
problems for dispersive readout schemes, which proved ad-
vantageous where applicable®!®?! and have allowed quan-
tum nondemolition measurements as well as high-fidelity
measurements based on bifurcation amplifiers.?>>3

In this paper we propose an improved phase qubit which
in contrast to conventional phase qubits is based on a sym-
metric well possessing significant anharmonicity. Moreover,
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FIG. 1. (a) Electric diagram of the qubit coupled to a resonant
circuit and (b) possible equivalent compound (two-junction
SQUID) circuit of the Josephson element included into the qubit
loop. Capacitance C includes both the self-capacitance of the junc-
tion and the external capacitance. Due to inclusion in the resonant
circuit of a Josephson junction JJ', the resonator may operate in the
nonlinear regime, enabling a bifurcation-based readout.

the manipulation and dispersive readout of this qubit are both
possible in a symmetry point that potentially improves its
coherent characteristics. The circuit diagram of our qubit is
shown in Fig. 1(a). It comprises the superconducting loop
with geometrical inductance L closed by a Josephson junc-
tion, generally shunted by an external capacitance, and rf-
driven LyCrGy resonance circuit inductively coupled to the
qubit loop. The peculiarity of this qubit is the unity value of
the SQUID screening parameter 3; = (27/ ®) LI, ~ 1, where
®y=h/2e is the flux quantum. This can be achieved by an
accurate design of the circuit including replacement of the
single junction with a two-junction SQUID with small loop
inductance, allowing more precise adjustment of the result-
ing critical current I, [see Fig. 1(b)]. This yields

ﬁL((I)c) = (4 W/(DO)LICO COS("T(DC/(DO) B (1 )

where I, is critical current of either Josephson junction and
®, is the control flux (0=, <D(/2).

The potential energy of the stand-alone qubit biased by
external magnetic flux @, includes the magnetic and Joseph-
son components and can be written as

U bo) = Ef0.5(d = ¢.)* = Bu(l +cos p)],  (2)

where E;=(®,/2m)?/L=E,/ B, is characteristic magnetic
energy associated with the loop inductance, the Josephson
coupling energy E;=(®y/2m)1,, the phase variable ¢ and the
phase bias ¢,=27d,/D,. For small values of B; <1, the
potential Eq. (2) yields the almost parabolic shape of the
global single well [first term in Eq. (2)], whereas for the
values (B; appreciably greater that 1, the series of wells are
superimposed on the global parabola, so the bottom parts of
these local minima can also be approximated by the qua-
dratic parabolas. In the case of large density of the levels
within these parabolas, the energy spectrum is also close to
that of a harmonic oscillator. So, neither of these cases al-
lows significant anharmonicity necessary for the efficient qu-
bit operation.

The essentially different shape of the potential Eq. (2)
with ¢,=7 is, however, achieved for B;=1, i.e., when
the quadratic magnetic term is partially compensated by the
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quadratic term in the Josephson energy expansion near the
bottom (U=0) of the single well centered at = ¢p—m7=0,
i.e.,
(IBL_ 1) 2 1 4
Ulp) =~E)| - ———¢*+ —¢* +0(¢% |. 3

(p) = E, 25, ¢ t® (¢”) 3)
In the ultimate case of B;=1, Eq. (3) provides the obtuse
shape of the quartic parabola. Taking into account the finite
kinetic energy of the system in corresponding Schrodinger
equation, Q2/2C=—4EC(9¢,¢,, where Q=—i(2€)(9¢ is the charge
operator,?’ one can perform quantization of the system. Ap-
plication of the quasiclassical quantization rule of Bohr-
Sommerfeld yields for this quartic oscillator the energy lev-
els obeying the 4/3 power law?®

EY) = e(n +1/2)*? )

with prefactor € which in terms of the parameters of our
circuit is equal to

e=27P3[mK(1/2) 13 (E,E)? = 1.9(E,;ED)'?,  (5)

where K(k) is the complete elliptic integral of the first kind.
Thus, the energy spectrum in the quartic potential takes in-
termediate position between the equidistant spectrum of the
harmonic oscillator E, o (n+1/2) and that of the rectangular
well, E, =« (n+1)2, having extremely high anharmonicity. Ex-
pressions (4) and (5) are exact for the higher levels (n>1)
and large “mass” (capacitance C), ensuring the very large
ratio of the Josephson energy E; to the charging energy E.
=¢?/2C. An estimate of the anharmonicity factor in this qua-
siclassical approximation can be immediately obtained from
Eq. 4)

Sye = (AE| — AEG)/AE, = 26%. (6)

The numerical solution of the corresponding Schrodinger
equation with potential energy Eq. (2) yields in the limit
E;/E.>1 an even larger value of the anharmonicity factor,
8~=33% (see the energy spectrum in Fig. 2). These values
substantially exceed the typical anharmonicity values of the
conventional phase qubit, 5phase|~3%, for the number of
levels inside the cubic-parabola well equal to four,>'> and
transmon qubit, |Syunemon| = (E./8E;)*<5% for optimum
values E;/E.=50.” Moreover, in contrast to the negative
values of ¢ in these examples, the series of the energy levels
in the quartic potential has positive value 6> 0, i.e., corre-
sponds to successively increasing level spacings AE| <AE,
<AE;<:---.

Such a large, positive anharmonicity is a great advantage
of the quartic potential qubit allowing manipulation within
the two basis qubit states |0) and |1) not only when applying
resonant microwave field, v,,,, =~ v, but also when applying
control microwave signals with large frequency detuning or
using rather wide-spectrum rectangular-pulse control signals.
The characteristic qubit frequency v,,=AE/h and the anhar-
monicity factor 6 computed from the Schrodinger equation
for the original potential Eq. (2) in the range 0.9=p;
=1.02 are shown in Fig. 3. One can see that the significant
range in the tuning of the qubit frequency within the range of
sufficiently large anharmonicity (~20-50 %) is attained at a
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FIG. 2. (Color online) Position of the lowest six levels (solid
lines) in the potential Eq. (2) for ¢, = as a function of parameter
B, [in experiment, controlled by external magnetic flux @, see
Eq. (1)] for typical values of L and C yielding E;/E.,~E/E,
~35.1 X 10*. With an increase in 3;, the spectrum crosses over from
that of the harmonic oscillator type (left inset) to the set of the
doublets (right inset), corresponding to the weak coupling of the
oscillator-type states in two separate wells (the flux qubit limit). The
spectrum in the central region ;=1 is strongly anharmonic. The
dashed line shows the bottom energy of the potential U(¢, =),
which in the case of 8;,>1 is equal to —AU~—1.5E,(B,—1)%/8,
(in other words, AU is the height of the energy barrier in the right
inset) (Refs. 24 and 25). The dotted (zero-level) line indicates the
energy in the symmetry point ¢=0, i.e., at the bottom of the single
well (B, =1) or at the top of the energy barrier (8;>1). The black
dot shows the critical value Bf at which the ground-state energy
level touches the top of the barrier separating the two wells.

rather fine (typically =1-2 %) tuning of 3, around the value
Br=1. Such tuning of B; is possible in the circuit having the
compound configuration shown in Fig. 1(b). For values of
B> 1, the symmetric energy potential has two minima and a
barrier between them. The position of the ground-state level
depends on (; and the ratio of the characteristic energies
E; E.=B;E;/E,.. The value of B; at which the ground-state
level touches the top of the barrier sets the upper limit 3; for
the quartic qubit (marked in Fig. 2 by solid dot). At B,
> B;, the qubit energy dramatically decreases and the qubit
states are nearly the symmetric and antisymmetric combina-
tions of the states inside the two wells (see the right inset in
Fig. 2 showing this flux-qubit limit). Although the qubit with
such parameters has very large anharmonicity and can be
nicely controlled by dc flux pulses,?>2° its readout can hardly
be accomplished in a dispersive fashion, because very large
E;/E,. yields in our case exponentially small splitting of the
qubit levels. These levels are extremely critical to the sym-
metry of the energy potential. So even small amplitude of
radio-frequency readout signal will significantly tilt the qubit
potential and therefore ruin the basis levels.

Another advantage of the phase qubit having the energy
potential of the shape close to the quartic one is a strong
dependence of its Josephson inductance L;(P,,n) on the
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FIG. 3. (Color online) (a) The qubit frequency as a function of
parameter 3; for fixed L=50 pH and several values of capacitance
C=0.1, 0.3, 1.0, and 3.0 pF (from top to bottom), corresponding to
the values of the ratio E;/E.~1.7X 104, 5.1 X 10%, 1.7 X 10°, and
5.1 X 10°. (b) Anharmonicity parameter & as a function of parameter
B, for the same as in (a) inductance L and capacitance values (from
top to bottom).

quantum state |n). The observed value of the reverse induc-
tance is related to the local curvature of the dependence of
corresponding energy E, on flux @, (see, e.g., Ref. 18),

. 2w, (b4, PE(D,)
LJ (q)e’n) = (I)0<n| a¢e |n>_ (9@3

)

where ] is the operator of supercurrent circulating in the
qubit loop. The dependence of the reverse inductance
L,(®,=Dy/2,n) calculated numerically in the two lowest
quantum states (z=0 and 1) for L=50 pH and the same set
of capacitances C as in Fig. 3 is shown in Fig. 4. One can see
that the ratio of the geometrical to Josephson inductances
L/L; takes large and very different values that can be favor-
ably used for the dispersive readout, ensuring a sufficiently
large output signal. Note that for 5; <1, both inductances
L,(n=0) and L,(n=1) are negative, whereas at 8,>1 the
inductance L;(n=1) changes the sign to positive.

The readout of this qubit is based on the measurements of
the reactive part (inductance) of the loop impedance probed
by a low-frequency ac signal, f<<v,, of sufficiently small
amplitude® (see also Ref. 6). This signal is supplied by a
rf-driven oscillator [Fig. 1(a)] as an alternating biasing flux,
®,=0.5P,+MI; or ¢,=m+8¢p,, where S¢p,=a cos(2mft)
with a<<1. Here M=«(LLg)"? is mutual inductance, k, a
dimensionless coupling coefficient and /;, the current in in-
ductance Lg. Coupling of the qubit to the resonance tank
circuit causes renormalization of the circuit inductance (see,
e.g., Refs. 6 and 18),
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FIG. 4. (Color online) The values of the Josephson inductance
of the quartic potential qubit in the ground (solid lines) and excited
(dashed lines) states calculated for the geometric inductance value
L=50 pH and the set of capacitances C, increasing from top to
bottom for both groups of curves.

LW = L[ 1 - kL/L,(n)], (8)

and the resonance frequencies w,=[LiWC]"2, where n=0
and 1. The relative difference of the resonance frequencies
for the qubit in the excited and ground states is

@:wl—woz /1—K§L/LJ(0)_1' ©)

o o 1— k°L/IL,(1)
Figure 5 shows this relative frequency shift versus parameter
B;. One can see that for the rather conservative value of
dimensionless coupling k=0.05, the relative frequency shift
can achieve the easily measured values of about 10%. The
efficiency of the dispersive readout can be improved in the
nonlinear regime with bifurcation.?? With our device this re-
gime can be achieved in the resonance circuit including, for
example, a Josephson junction (marked in the diagram in
Fig. 1 by a dashed cross). Due to the high sensitivity of the
amplitude (phase) bifurcation to the threshold determined by
the effective resonance frequency of the circuit, one can ex-
pect a readout with high fidelity even at a rather weak cou-
pling of the qubit and the resonator (compare with the read-
out of quantronium in Ref. 30). Further improvement of the
readout, including good control of the circuit parameters, can
be achieved applying the cavity bifurcation amplifier.3!

The loop configuration and frequency detuning of the
quartic qubits should allow their inductive coupling with
variable strength keeping both qubits in optimal points. Vari-
able coupling of the optimally biased qubit to a supercon-
ducting resonator is also possible. More sophisticated cou-
pling of the pairs of quartic qubits can be accomplished, for
example, using a Josephson-junction coupler in a fashion
recently proposed by Harris et al.??

In conclusion, we have shown that the phase qubit of the
rf-SQUID configuration with parameter 8; = 1 and flux bias
®,=d,/2 has remarkable characteristics. It can be easily
integrated into available technology and allow controllable
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FIG. 5. (Color online) The resonance frequency shift in the cir-
cuit due to excitation of the qubit with the inductance value L
=50 pH and the set of capacitances C, decreasing from top to bot-
tom. The dimensionless coupling coefficient k=0.05.

coupling to qubits and electrical and mechanical resonators.
Still, we expect that implementation of this qubit requires the
solution of several experimental problems. For example, due
to a high sensitivity of the qubit parameters to the magnitude
of ;, whose optimum values lie within a rather narrow
range (*1-2 %), particular precaution should be taken
against fluctuations in the line controlling the effective Jo-
sephson coupling in the circuit [see Fig. 1(b)], because oth-
erwise it may cause significant dephasing of the qubit. Fur-
thermore, flux bias ®,=®,/2 should also be set as precisely
as possible. Experimentally, it can be realized either by
freezing the flux ®,=®d in the main loop having a symmet-
ric gradiometer configuration,> or by including in the loop
of a Josephson 7 junction®** with a sufficiently high critical
current ensuring the steady phase shift of .

Another advantage of the proposed quartic qubit, which is
particularly important for scalable circuits, is that the readout
of these qubits can be performed without resetting them. In
contrast to conventional phase qubits, the basis states of the
quartic qubits are associated with a global minimum and
their (dispersive) readout never causes escape out of this
minimum. Such escape is usually followed by sequential
quantum transitions (relaxation) inside the adjacent (deeper)
well. This relaxation in an adjacent idle well causes, first,
unavoidable delay in the circuit operation and, second, gen-
eration of microwave-frequency photons which may present
a problem in integrated systems because of possible interac-
tion with the rest of the circuit.?

Of course, similar to properties of the conventional types
of the phase qubits, the coherence characteristics of the quar-
tic qubit will be strongly dependent on the material proper-
ties of the circuit. Minimizing the losses due to the qubit
coupling to microscopic degrees of freedom (two-level sys-
tems) inside the dielectrics surrounding the superconducting
circuit (the substrate, insulator inside the capacitor, the junc-
tion barriers, etc.) play crucial role for improving the qubit
coherence.!! Since the operation and tuning of the quartic
qubit is possible without leaving the optimal point, one may
expect a weaker coupling of the qubit to these microscopic
two-level systems located inside dielectrics and, therefore, a
better quantum coherence. Moreover, the zero persistent su-
percurrent circulating in the qubit loop of the qubit with
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single junction at the optimum bias, ¢,=, may also reduce
the effect of quasiparticle tunneling on the qubit coherence.
Probably, such weakening of the qubit coupling to external
degrees of freedom can explain reasonably good coherence
characteristics (7g,,; =60 ns) of the Nb camelback qubit op-
erated in an optimal point at zero persistent current.’? Any-
way, the properties of the proposed quartic qubit will be
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clarified in experiment which is currently in the preparation
stage.
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